林嶔 (Lin, Chin)
Lesson 8
同樣的資訊,使用圖像相呈現較於表格/文字,通常能讓閱讀者更快的獲得資訊。
在R裡面,我們能夠畫出任何統計圖!
– 請至這裡下載本週的範例資料
dat = read.csv("Example data.csv", header = TRUE)
head(dat)
## eGFR Disease Survival.time Death Diabetes Cancer SBP DBP
## 1 34.65379 1 0.4771037 0 0 1 121.2353 121.3079
## 2 37.21183 1 3.0704424 0 1 1 122.2000 122.6283
## 3 32.60074 1 0.2607117 1 0 0 118.9136 121.7621
## 4 29.68481 1 NA NA 0 0 118.2212 112.7043
## 5 28.35726 0 0.1681673 1 0 0 116.7469 115.7705
## 6 33.95012 1 1.2238556 0 0 0 119.9936 116.3872
## Education Income
## 1 2 0
## 2 2 0
## 3 0 0
## 4 1 0
## 5 0 0
## 6 1 0
hist(dat[,"eGFR"])
boxplot(dat[,"eGFR"])
pie(table(dat[,"Education"]))
barplot(table(dat[,"Education"]))
– 在R裡面的顏色可以在Colors in R裡查看
– 另外,這裡教一個新函數「par()」,他可以指定繪圖環境。其中最常見的應用為把4張圖放在同一張畫布內:
par(mfrow = c(2, 2))
hist(dat[,"eGFR"], col = "red")
boxplot(dat[,"eGFR"], col = "blue")
pie(table(dat[,"Education"]), col = c("blue", "red", "green"))
barplot(table(dat[,"Education"]), col = c("gray90", "gray50", "gray10"))
pdf("plot1.pdf", height = 8, width = 8, family = "serif")
par(mfrow = c(2, 2))
hist(dat[,"eGFR"], col = "red")
boxplot(dat[,"eGFR"], col = "blue")
pie(table(dat[,"Education"]), col = c("blue", "red", "green"))
barplot(table(dat[,"Education"]), col = c("gray90", "gray50", "gray10"))
dev.off()
boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
boxplot(dat[,"eGFR"] ~ dat[,"Disease"], col = c("blue", "red"), ylab = "eGFR", xlab = "Disease", main = "eGFR value by Disease status", lwd = 1.5)
plot(dat[,"SBP"], dat[,"DBP"], ylab = "DBP", xlab = "SBP", main = "Scatter plot of SBP and DBP")
plot(dat[,"SBP"], dat[,"DBP"], ylab = "DBP", xlab = "SBP", main = "Scatter plot of SBP and DBP", pch = 19)
– 函數「lines()」的效果是按照順序把幾個點連起來,舉例來說…
– 註:函數「plot.new()」及函數「plot.window()」是拿來開一張新畫布用的!
x = c(1, 4, 7)
y = c(2, 9, 6)
plot.new()
plot.window(xlim = c(0, 10), ylim = c(0, 10))
lines(x, y)
z = 0:1000/100
x = sin(z) #三角函數sin
y = cos(z) #三角函數cos
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1))
lines(x, y)
– 預測線的方程式,需要先用第7課所學到的函數「glm()」幫忙建立,你看得懂下面的程式碼嗎?
# 建立MODEL以及預測線的座標
X = dat[,"SBP"]
Y = dat[,"DBP"]
model = glm(Y~X)
COEF = model$coefficients
x = c(0, 200)
y = COEF[1] + COEF[2] * x
plot(dat[,"SBP"], dat[,"DBP"], ylab = "DBP", xlab = "SBP", main = "Scatter plot of SBP and DBP", pch = 19)
lines(x, y, col = "red", lwd = 2)
x = 0:1000/5
Y = dat[,"DBP"]
y = x
ci.low = x
ci.up = x
indexes = 1:length(x)
for (i in indexes) {
X = dat[,"SBP"] - x[i]
model = glm(Y~X)
COEF = summary(model)$coefficients
y[i] = COEF[1,1]
ci.low[i] = COEF[1,1] - qnorm(0.975) * COEF[1,2]
ci.up[i] = COEF[1,1] + qnorm(0.975) * COEF[1,2]
}
plot(dat[,"SBP"], dat[,"DBP"], ylab = "DBP", xlab = "SBP", main = "Scatter plot of SBP and DBP", pch = 19)
lines(x, y, col = "red", lwd = 2)
lines(x, ci.low, col = "red", lty = 2, lwd = 2)
lines(x, ci.up, col = "red", lty = 2, lwd = 2)
x = 0:1000/5
X = dat[,"SBP"]
Y = dat[,"DBP"]
model = glm(Y~X)
COEF = model$coefficients
VCOV = summary(model)$cov.scaled
y.list = COEF[1] + COEF[2] * x
se.list = sqrt(diag(cbind(1, x) %*% VCOV %*% t(cbind(1, x))))
ci.low.list = y.list - qnorm(0.975) * se.list
ci.up.list = y.list + qnorm(0.975) * se.list
plot(dat[,"SBP"], dat[,"DBP"], ylab = "DBP", xlab = "SBP", main = "Scatter plot of SBP and DBP", pch = 19)
lines(x, y.list, col = "red", lwd = 2)
lines(x, ci.low.list, col = "red", lty = 2, lwd = 2)
lines(x, ci.up.list, col = "red", lty = 2, lwd = 2)
x = c(1, 0, -1, 0)
y = c(0, 1, 0, -1)
t = c("A", "B", "C", "D")
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1))
text(x, y, t)
x = c(1, 0, -1, 0)
y = c(0, 1, 0, -1)
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1))
points(x, y, pch = 1:4)
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1))
legend("topleft", c("Female", "Male"), col = c("red", "blue"), pch = c(15, 19), bg = "gray90")
legend(0, 0, c("estimates", "95% CI"), lty = c(1, 2), lwd = 2, col = "black")
x = c(1, 0, -1, 0)
y = c(0, 1, 0, -1)
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1))
polygon(x, y, col = "green")
– 畫出下面這張圖!
## Variable Disease:0 Disease:1 p-value
## 1 "eGFR" "33.2±6.4" "34.4±7.2" "0.020"
m0 = 33.2
m1 = 34.4
s0 = 6.4 / sqrt(249)
s1 = 7.2 / sqrt(691)
XXX = c(m0, m1)
barplot(XXX, col = c("gray50", "white"), xlab = "Disease", ylab = "eGFR", ylim = c(0, 43))
lines(c(1.9, 1.9), c(m1 - qnorm(0.975) * s1, m1 + qnorm(0.975) * s1), lwd = 3)
lines(c(1.75, 2.05), c(m1 + qnorm(0.975) * s1, m1 + qnorm(0.975) * s1), lwd = 3)
lines(c(1.75, 2.05), c(m1 - qnorm(0.975) * s1, m1 - qnorm(0.975) * s1), lwd = 3)
lines(c(0.7, 0.7), c(m0 - qnorm(0.975) * s0, m0 + qnorm(0.975) * s0), lwd = 3)
lines(c(0.55, 0.85), c(m0 + qnorm(0.975) * s0, m0 + qnorm(0.975) * s0), lwd = 3)
lines(c(0.55, 0.85), c(m0 - qnorm(0.975) * s0, m0 - qnorm(0.975) * s0), lwd = 3)
lines(c(0.7, 0.7, 1.9, 1.9), c(36, 38, 38, 36), lwd = 3)
text(1.3, 40, "p = 0.020")
legend("topright", c("Control", "Case"), fill = c("gray50", "white"))
– 首先我們先來學存活分析最常使用的:Kaplan Meier curve
– 先載入這個套件吧!
library(survival)
– 函數「survdiff()」可以拿來計算log rank test的結果
KM.curve = survfit(Surv(dat[,"Survival.time"], dat[,"Death"])~ dat[,"Diabetes"])
KM.curve
## Call: survfit(formula = Surv(dat[, "Survival.time"], dat[, "Death"]) ~
## dat[, "Diabetes"])
##
## 79 observations deleted due to missingness
## n events median 0.95LCL 0.95UCL
## dat[, "Diabetes"]=0 749 379 1.92 1.76 2.23
## dat[, "Diabetes"]=1 172 89 2.11 1.78 2.61
log_rank.test = survdiff(Surv(dat[,"Survival.time"], dat[,"Death"])~ dat[,"Diabetes"])
log_rank.test
## Call:
## survdiff(formula = Surv(dat[, "Survival.time"], dat[, "Death"]) ~
## dat[, "Diabetes"])
##
## n=921, 79 observations deleted due to missingness.
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## dat[, "Diabetes"]=0 749 379 370.3 0.205 0.986
## dat[, "Diabetes"]=1 172 89 97.7 0.777 0.986
##
## Chisq= 1 on 1 degrees of freedom, p= 0.3
plot(KM.curve, col=c("red", "blue"), xlab="Time(month)", ylab="Free of death" ,xlim=c(0,40), main="Overall survival", mark.time = FALSE, lwd = 3)
legend("topright", c("Diabetes patient", "Healthy control"), col = c("blue", "red"), text.col = c("blue", "red"), lty = 1, bg = "gray90", lwd = 3)
text(20,0.8, "p of log rank test = 0.321")
KM.curve = survfit(Surv(dat[,"Survival.time"], dat[,"Death"])~ dat[,"Diabetes"])
plot(KM.curve, col=c("red", "blue"), xlab="Time", ylab="Free of death" ,xlim=c(0,40), main="Overall survival", mark.time = FALSE, axes = FALSE, lwd = 3)
axis(1, at = c(0, 10, 20, 30, 40), labels = c("2010-Jan", "2010-Nov", "2011-Sep", "2012-Jul", "2013-May"), pos = 0)
axis(2, at = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c("0%", "20%", "40%", "60%", "80%", "100%"), pos = 0)
legend("topright", c("Diabetes patient", "Healthy control"), col = c("blue", "red"), text.col = c("blue", "red"), lty = 1, bg = "gray90", lwd = 3)
text(20,0.8, "p of log rank test = 0.321")
– 唯一的問題是當模型中有很多變項時,我們會假定其他變項為一個定值(通常為平均數),接著再比較有興趣的變項對存活情形的影響。
dat[,"Diabetes"] = as.factor(dat[,"Diabetes"])
dat[,"Income"] = as.factor(dat[,"Income"])
Cox.model = coxph(Surv(dat[,"Survival.time"], dat[,"Death"]) ~ ., data = dat[,c("Diabetes", "SBP", "Income")])
NEW = data.frame(Diabetes = factor(0, levels = c(0, 1)),
SBP = mean(dat[,"SBP"], na.rm = TRUE),
Income = factor(0:2, levels = c(0, 1, 2)))
Predict.Surv = survfit(Cox.model, newdata = NEW)
plot(Predict.Surv, col = c("red", "darkgreen", "blue"), xlab="Time", ylab="Free of death" ,xlim=c(0, 40), main="Overall survival", mark.time = FALSE, lwd = 3)
legend("topright", c("Low income", "The middle class", "Wealthy"), col = c("red", "darkgreen", "blue"), text.col = c("red", "darkgreen", "blue"), lty = 1, bg = "gray90", lwd = 3)
text(20,0.7, "p of Cox moel (wald test) = 0.198")
– 物件『RATES』以及物件『TIMES』分別是時間與存活機率的對應座標
dat[,"Diabetes"] = as.factor(dat[,"Diabetes"])
dat[,"Income"] = as.factor(dat[,"Income"])
Cox.model = coxph(Surv(dat[,"Survival.time"], dat[,"Death"]) ~ ., data = dat[,c("Diabetes", "SBP", "Income")])
NEW = data.frame(Diabetes = factor(0, levels = c(0, 1)),
SBP = mean(dat[,"SBP"], na.rm = TRUE),
Income = factor(0:2, levels = c(0, 1, 2)))
Predict.Surv = survfit(Cox.model, newdata = NEW)
RATES = Predict.Surv$surv
head(RATES)
## 1 2 3
## [1,] 1.0000000 1.0000000 1.0000000
## [2,] 0.9988564 0.9991142 0.9987262
## [3,] 0.9977127 0.9982282 0.9974526
## [4,] 0.9977127 0.9982282 0.9974526
## [5,] 0.9977127 0.9982282 0.9974526
## [6,] 0.9977127 0.9982282 0.9974526
TIMES = Predict.Surv$time
head(TIMES)
## [1] 0.0008229762 0.0023436942 0.0061026923 0.0067782956 0.0071076085
## [6] 0.0081918007
開一個空畫布
利用函數「lines()」畫出3條存活曲線(注意:由於Kaplan Meier curve在有人死的時候同個時間點會有兩個點,請你自己增加這些點)
自行繪製座標軸
current_TIMES = c(0, TIMES)
time_seq = as.numeric(rbind(current_TIMES[-length(current_TIMES)], current_TIMES[-1]))
plot.new()
plot.window(xlim = c(0, 40), ylim = c(0, 1))
for (i in 1:ncol(RATES)) {
current_RATES = c(1, RATES[,i])
rate_seq = as.numeric(rbind(current_RATES[-length(current_RATES)], current_RATES[-1]))
lines(time_seq, rate_seq, col = i + 1)
}
axis(1, at = c(0, 10, 20, 30, 40), labels = c(0, 10, 20, 30, 40), pos = 0)
axis(2, at = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c("0%", "20%", "40%", "60%", "80%", "100%"), pos = 0)
繪製簡單的統計圖表
為你的統計圖表增加物件(如誤差線、說明文字等)
更改座標軸
將圖片儲存成pdf檔案